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Abstract

Few-shot open-set recognition (FSOSR) has be-
come a great challenge, which requires classify-
ing known classes and rejecting the unknown ones
with only limited samples. Existing FSOSR meth-
ods mainly construct an ambiguous distribution of
known classes from scarce known samples with-
out considering the latent distribution information
of unknowns, which degrades the performance of
open-set recognition. To address this issue, we
propose a novel loss function called multi-relation
margin (MRM) loss that can plug in few-shot meth-
ods to boost the performance of FSOSR. MRM
enlarges the margin between different classes by
extracting the multi-relationship of paired samples
to dynamically refine the decision boundary for
known classes and implicitly delineate the distribu-
tion of unknowns. Specifically, MRM separates the
classes by enforcing a margin while concentrating
samples of the same class on a hypersphere with
a learnable radius. In order to better capture the
distribution information of each class, MRM ex-
tracts the similarity and correlations among paired
samples, ameliorating the optimization of the mar-
gin and radius. Experiments on public benchmarks
reveal that methods with MRM loss can improve
the unknown detection of AUROC by a signifi-
cant margin while correctly classifying the known
classes.

1 Introduction
Few-shot learning (FSL) has emerged as a promising direc-
tion for tackling the challenge of recognizing new classes
with few labeled samples [Chen et al., 2019; An et al.,
2023]. Conventional few-shot learning methods mostly hold
a closed-set assumption that testing samples belong to the
predefined classes of training samples [Liu et al., 2020b].
However, in real-world applications, there always exist un-
foreseen testing samples out of classes of training samples,
which results in severe distribution shifts [Hsu et al., 2020].
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Hence, the learned model should not only classify known
classes but also reject unknowns.

Open-set recognition (OSR) [Bendale and Boult, 2016;
Oza and Patel, 2019; Perera et al., 2020] considers the
scenario where testing samples could come from unknown
classes. The existing OSR methods mainly learn an unknown
class detector by utilizing the characteristics of known classes
from substantial datasets. But having a sufficient number
of training samples is inconsistent with few-shot learning.
Therefore, directly applying OSR methods in the few-shot
setting could degrade the performance.

Recently, few-shot open-set recognition (FSOSR) is pro-
posed to tackle the new problems that classify the known
classes and reject the unknown ones with a few samples.
The main challenge of FSOSR is how to detect unknown
class samples while maintaining the classification capabil-
ity of known classes with limited labeled training samples.
Existing methods for FSOSR mostly construct an ambigu-
ous distribution of known classes while ignoring the latent
distribution information of unknowns [Jeong et al., 2021;
Pal et al., 2022]. These methods easily lead to confu-
sion between unknown and known samples and further de-
grade the open-set performance. Limited methods attempt to
learn the unknown information by directly utilizing or gen-
erating pseudo-unknown class samples [Huang et al., 2022;
Pal et al., 2023]. However, these methods heavily rely on the
quality of pseudo-unknown samples and the latent true distri-
bution of unknown classes may not be adequately represented
by these pseudo-unknown samples. Hence, how to properly
delineate the distribution of unknowns is an essential problem
for FSOSR.

In this paper, we propose multi-relation margin (MRM)
loss, which seeks to dynamically refine the distinct deci-
sion boundary for known classes and implicitly delineate the
distribution of unknown classes without relying on pseudo-
unknown samples. Specifically, MRM enlarges the margin
between different classes and adjusts a hypersphere for each
known class with a learnable radius to form a finer bound-
ary between the closed and open spaces. In order to capture
the entire data distribution information and further refine the
margin and radius, we excavate multiple relationships among
paired samples, including self-relation and relative relation,
where self-relation is the similarity relation inside a pair and
relative relation is the correlation among different pairs. They
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both make a significant impact on exploiting the potential-
ity of each pair and precisely measuring the distribution of
paired samples. Therefore, the areas away from the bound-
aries of known classes implicitly delineate the distribution of
unknowns, and open-set detection can be easily conducted by
rejecting samples located in these areas. The effectiveness of
MRM is demonstrated by experiments on public benchmark
datasets.

In summary, our contributions are as follows:
• We propose a novel multi-relation margin (MRM) loss to

boost the performance of FSOSR. Compared with pre-
vious methods, MRM is able to implicitly delineate the
distribution of unknown classes without relying on addi-
tional pseudo-unknown class samples.

• We explore a new formulation of margin-based deep
metric learning for FSOSR. Our method enforces the
margin between different classes by extracting the multi-
relationship of paired samples to learn a finer boundary
between closed and open spaces.

• We perform adequate experiments to verify the effec-
tiveness of MRM. Results reveal that few-shot methods
with MRM loss can improve the unknown detection of
AUROC by a significant margin while correctly classi-
fying the closed-set.

2 Related Work
Few-shot learning. Few-shot learning focuses on train-
ing models with limited labeled samples to develop the ca-
pacity of recognizing novel classes [An et al., 2021; Ma
et al., 2022a]. Representative few-shot learning literature
can be typically organized into two branches: optimization-
based methods and metric-based methods. Optimization-
based methods can achieve generalization ability within a
small number of update steps. Specifically, MAML [Finn
et al., 2017] adapts model parameters to novel tasks based
on the loss computed by secondary gradients. Metric-based
methods try to model an appropriate feature metric space and
predict query samples based on the distance function. Pro-
toNet [Snell et al., 2017] suggests measuring the Euclidean
distance between the mean of the support samples, indicated
as class prototypes, and the query samples for classification.
On that basis, FEAT [Ye et al., 2020] transforms class pro-
totypes to task-adaptive prototypes with a set-to-set function.
In our work, we mainly consider the classification combined
with ProtoNet and FEAT. Although prior FSL studies have
demonstrated promising results under the closed-set assump-
tion that the query set and support set belong to the same
classes, the performance in the open-set setting is not guaran-
teed.
Open-set recognition. Open-set recognition describes a
scenario where new classes unseen in training occur in test-
ing, thus classifiers must be able to properly identify seen
samples while rejecting unseen ones [Geng et al., 2020].
OpenMax [Bendale and Boult, 2016] was the first solu-
tion towards open-set deep network combined with Extreme
Value Theory to detect unknowns by thresholding. Later re-
searchers mostly use discriminative or generative approaches

to tackle this issue. Specifically, C2AE [Oza and Patel, 2019]
and CGDL [Sun et al., 2020] utilize class conditioned auto-
encoders that have been trained on all of the train samples to
define a threshold. Since it requires a large amount of train-
ing samples to train an unseen sample detector or a generative
model, directly applying these OSR methods to the few-shot
setting could cause over-fitting and lead to poor performance.

Few-shot open-set recognition. FSOSR has gained pop-
ularity recently, which addresses OSR in the FSL setting.
Existing research on FSOSR mostly trains a model with-
out considering the distribution of unseen classes, which
could degrade the performance on unknown class detection.
SnaTCHer [Jeong et al., 2021] thresholds the distance be-
tween original prototypes and query replaced transformed
prototypes to detect unseens. [Pal et al., 2022] reinforce
the feature extractor through a residual attention network.
Limited methods focus on the distribution of unknowns by
directly utilizing or generating additional pseudo-unknown
samples. [Song et al., 2022] utilize background features
from seen classes as the pseudo-unseen classes for classifier
training. ATT [Huang et al., 2022] augments the classifier
with additional negative prototypes via a negative generator.
However, the pseudo-unknown based approach heavily de-
pends on the quality of pseudo samples, and these pseudo-
unknowns may not be adequate to represent the latent true
distribution of unknown classes. In our work, we aim to im-
plicitly delineate the distribution of unknowns through deep
metric learning.

Margin-based deep metric learning. Deep metric learn-
ing is an important series of meta-learning methods for learn-
ing better features. In the metric learning area, the stan-
dard softmax loss is regarded as insufficient for discrimina-
tion on different training classes [Liu et al., 2020a]. It can
only construct an ambiguous distribution. According to pre-
vious studies [Sohn, 2016; Song et al., 2016], integrating the
large margin to the standard loss could help learn highly-
discriminative features and efficiently improve the perfor-
mance on visual recognition tasks. As the representative of
margin-based methods, Triplet loss [Schroff et al., 2015] en-
forces each input sample as an anchor and works on the triplet
of samples {x+

i , x
a
i , x

−
i }, where y+i = yai and y−i ̸= yai . xa

i

is usually called an anchor in the i-th triplet, x+
i is the pos-

itive sample and x−
i is the negative sample. It assumes the

anchor is closer to the similar point than the dissimilar one
by the margin. Center loss [Wen et al., 2016] encourages
samples to concentrate on their corresponding class center.
However, these methods do not utilize all the samples con-
tained in a batch, which could result in losing valuable infor-
mation during training. On the contrary, Multi-similarity loss
[Wang et al., 2019b] considers each pair of samples in a batch
that construct an informative structure among anchor-sample
pairs and provide a new weighting scheme by calculating the
derivative of the loss function.

Although previous margin-based losses have achieved
promising results, they normally assume that sufficient sam-
ples can be provided for training. Recently, some researchers
are devoted to applying margin-based deep metric learning in
the few-shot setting [Li et al., 2020]. For instance, [Liu et al.,
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Figure 1: Comparison between popular margin-based metric learning losses. (a) Triplet loss operates on triplets of samples {anchor, positive
sample, negative sample}, which associates each anchor with a positive and a negative sample. (b) Center loss simply focuses on the
similarity relationship between a single sample and its class center. (c) Multi-similarity utilizes each pair of samples in a batch while ignoring
the structure information inside the class. (d) Our MRM loss refines a hypersphere with a learnable radius for each class and effectively
leverages the distribution information.

2020a] suggest using a negative margin to improve the novel
class performance. However, the negative margin will simul-
taneously degrade the classification capacity for base classes.
In our work, we focus on detecting unseen samples while
maintaining the classification capability of known classes.

3 Method
3.1 Preliminary
Few-shot open-set recognition (FSOSR) aims to classify
known classes and detect unknown ones with limited training
samples. FSOSR follows the typical FSL episode training
and testing strategy. Similarly to closed-set few-shot clas-
sification, for given N classes with K labeled supports per
class, an episode is called as an N -way K-shot problem. For-
mally, a few-shot task can be represented as T = (DS ,DQ).
Specifically, for the support set DS = {xS

i , y
S
i }NK

i=1 , where
xi ∈ X S and yi ∈ YS indicate sample in the support
set XS is from known classes with the known label space
YS . Different from closed-set few-shot learning, the query
set includes unknown class queries which can be denoted as
DQ = DK ∪ DU , where DK stands for the known set and
DU stands for the unknown set. The known query set is rep-
resented as DK = {xK

i ∈ XK , yKi ∈ YS}NQ
i=1 , which indi-

cates the known query is sampled from classes with the same
label space YS as support set, and Q is the number of known
queries in each class. The unknown query set is represented
as DU = {xU

i ∈ XU , yUi ∈ YU}NU

i=1 , where NU is the num-
ber of unknown queries and YS ∩ YU = ∅. The goal of
FSOSR is to train a model with small support set DS that can
classify known queries DK and detect unknown queries DU .

3.2 Multi-Relation Margin Loss
Instead of generating pseudo-unknown class samples to ap-
proximate the distribution of unknowns, MRM aims to obtain
a finer boundary between the closed and open spaces and fur-
ther implicitly delineate the distribution of unknown classes.
A question is then raised: how to learn discriminative spaces
for closed and open sets from limited samples?

Inspired by margin-based methods, MRM tackles this
question by optimizing margin spaces. Compared with exist-
ing methods, MRM divides the distribution of known classes
into clearer regions and takes full advantage of the distribu-
tion information. The illustration and comparison of different
margin-based losses and MRM loss are presented in Figure 1.
Specifically, MRM mainly implements three strategies: (1)
Anchor generating: utilize prototype as the anchor for each
pair to represent global distribution in the class; (2) Mar-
gin and radius refining: force the margin between different
classes while refining a hypersphere for each known class to
preserve the distribution information; (3) Pair-wise relation
modeling: extract multiple relationships among paired sam-
ples to cover the entire distribution information contained in
a pair.

Based on these strategies, MRM loss can be formulated as:

LMRM =
1

N

N∑
c=1

{λR2
c +

1

α
log[1 +

∑
x+
i ∈X+

c

eα(d(pc,fθ(x
+
i ))−Rc)]

+
1

β
log[1 +

∑
x−
i ∈X−

c

e−β(d(pc,fθ(x
−
i ))−(Rc+m))]}

(1)

Specifically, MRM works on pairs of samples that consist of
positive pair {pc, fθ(x+

i )} and negative pair {pc, fθ(x−
i )},

Where xi ∈ XS indicates the sample from the support
set. For class c, the support set can be divided into posi-
tive and negative sets, including X+

c = {x+
i }Ki=1 and X−

c =

{x−
i }

(N−1)K
i=1 , where y+i = c, y−i ̸= c. pc represents the class

prototype and Rc denotes the radius of hypersphere. fθ(·) is
the feature extractor with learnable parameters θ. d(·) is the
Euclidean distance function, m stands for the margin. λ is a
constant trading off the regulation of radius and margin loss
item, α and β are the scaling factors for positive and negative
sets respectively. The details of each strategy are as follows.

Anchor Generating
In this paper, we apply two types of anchor generation tech-
niques. Initially, we utilize the class prototypes as the class-
specific anchor. Moreover, we incorporate the anchor gen-
eration process with a transformation function to adapt and
modify the task-specific anchor.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3507



Class-specific anchor. The class prototype [Snell et al.,
2017] is proposed based on the assumption that there exists
an embedding space where points cluster around a single pro-
totype representation for each class. Therefore, MRM uti-
lizes the class prototype as the anchor for each pair instead of
an individual sample to achieve the representative features of
known classes. The class prototype is formulated as the mean
vector of support embedding vectors:

pc =
1

|K|
∑

xi∈XS
c

fθ(xi) (2)

where XS
c is the support set labeled to class c. The central

idea is to learn more centralized features by forcing the sam-
ples closer to their corresponding prototypes and further to
samples from different classes. With the anchor pc, MRM
could obtain a finer boundary between the positive and nega-
tive set by a margin m. Specifically, MRM enforces the mar-
gin between the positive pair {pc, fθ(x+

i )} and negative pair
{pc, fθ(x−

i )}:

d(pc, fθ(x
−
i )) > d(pc, fθ(x

+
i )) +m (3)

By utilizing the class-specific anchor p, we can derive the
class-specific multi-relation margin loss, denoted as LMRMC

,
based on Eq.(1).
Task-specific anchor. According to previous studies, trans-
formation functions are demonstrated to provide effective
FSOSR performance [Jeong et al., 2021; Ma et al., 2022b].
Inspired by these methods, we apply a standard set-to-set
function to modify more distinguishable prototypes as an-
chors to consider the entire distribution of the task [Ye et
al., 2020]. The set-to-set function transforms a set of orig-
inal prototypes P = {pc}Nc=1 to a set of adapted prototypes
P ′ = {p′c}Nc=1, which projects the input feature into query,
key, and value space with learnable transformation matrices.
The training process is as follows:

A(P ) = (WvP )(s(
(WqP )T (WkP )√

M
)T )

P ′ = σ(P +A(P ))

(4)

where A is the attention weights matrix. Wq,Wk, and Wv ∈
RM×M are learnable projection kernels for query, key, and
value space respectively. σ indicates the layer normaliza-
tion, and s(·) is the softmax function. By incorporating the
modified prototype p′, we can obtain the task-specific multi-
relation margin loss denoted as LMRMT

, which adapts the
original prototype p as described in Eq.(1).

Margin and Radius Refining
Previous algorithms mostly attempted to compress sample
points of the same class as much as possible. Consequently,
these samples will be shrunk into one point in the embed-
ding space and lose their similarity structure inside the class,
which degrades the recognition performance. Inspired by
[Wang et al., 2019a], instead of pulling intra-class samples
as compact as possible, MRM learns a hypersphere for each
known class with a learnable radius to preserve the distribu-
tion structure inside it. Specifically, MRM forces the distance

between the class prototype and positive sample to be smaller
than a threshold, which is the radius of each class’s hyper-
sphere. Mathematically,

d(pc, fθ(x
+
i )) < Rc (5)

where x+
i ∈ X+

c and Rc is the hypersphere radius of class
c. Details about updating the hypersphere by optimizing the
radius are explained in Section 4.2. Hence, we can obtain
a distinct decision boundary for each class while taking the
prototype as a center point. Based on the positive boundary,
the margin between positive and negative sets in Eq.(3) can
be refined as:

d(pc, fθ(x
−
i )) > Rc +m (6)

Since the number of negative pairs is much larger than that
of positive pairs in a few-shot task, we adjust the radius based
on the negative pairs which are more informative. According
to Eq.(6), R is limited to the distance between the anchor and
negative samples, we can approximate it by calculating the
negative distance. Besides, we add a trade-off hyperparame-
ter that allows some points to be mapped outside the sphere.
For class c, the hypersphere could be updated by adjusting the
radius Rc:

Rc = hν({d(pc, fθ(x−
i ))−m}(N−1)K

i=1 ) (7)
Where h(·) is the quantile function and ν is the hyperparam-
eter that controls violations of the boundary.

Pair-Wise Relation Modeling
In order to utilize the entire distribution information con-
tained in a pair, MRM extracts self-relations and relative re-
lations among paired samples. Self-relation is denoted as the
similarity relation between the anchor and positive or nega-
tive sample in a pair. Relative relation is computed by con-
sidering correlations of other pairs. According to previous
research [Wang et al., 2019b], they both have a significant
impact on exploiting the potentiality of each pair and building
a discriminative distribution structure, whereas most existing
methods only partially explore this factor.

As Multi-similarity loss suggests, pair-wise relation could
be modeled through sample weighting, and the partial deriva-
tive of the loss function with respect to each pair is its weight.
Paired samples with higher weights are considered to be more
informative in the optimizing process. For instance, negative
pairs that are in close proximity to the anchor and closer to
the anchor than other negative samples are assigned higher
weights, which means such negative samples are more dif-
ficult to classify, and thus carry more valuable distribution
information.

Since the main goal of MRM is to encourage positive pairs
to be closer while pushing negative pairs away from each
other, it is reasonable to assume ∂LMRM

∂d(pc,fθ(x
+
i ))

≥ 0 for the

positive pair {pc, fθ(x+
i )}, thus its weight wc+

i can be com-
puted as:

wc+

i =
∂LMRM

∂d(pc, fθ(x
+
i ))

=
eα(d(pc,fθ(x

+
i ))−Rc)

1 +
∑

x+
k ∈X+

c

eα(d(pc,fθ(x
+
k ))−Rc)

(8)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3508



where the weight is computed jointly from its self-
relation by measuring the anchor and positive sample in
eα(d(pc,fθ(x

+
i ))−Rc), and relative relations by comparing to

other positive pairs {pc, fθ(x+
k )} with the same anchor pc in

the item d(pc, fθ(x
k
+)) − Rc. Similarly, for the negative pair

{pc, fθ(x−
i )}, we assume ∂LMRM

∂d(pc,fθ(x
−
i ))

≤ 0, and the weight

wc−

i is formulated as:

wc−

i = − ∂LMRM

∂d(pc, fθ(x
−
i ))

=
e−β(d(pc,fθ(x

−
i ))−(Rc+m))

1 +
∑

x−
k ∈X−

c

e−β(d(pc,fθ(x
−
k ))−(Rc+m))

(9)

Remark. In comparison to existing margin-based losses,
MRM offers several key advantages: (1) MRM divides the
distribution of known classes into distinct regions and em-
ploys a learnable radius centered on the prototype to refine
the distribution of each class. This allows MRM to detect un-
known samples that are located away from known regions,
while existing methods only construct ambiguous decision
boundaries. (2) MRM utilities both intra-class and inter-class
distribution of samples to learn an appropriate radius for each
known class, efficiently preventing overfitting and enhancing
generalization in the few-shot setting, which is not addressed
by existing methods.

4 Experiments
4.1 Datasets and Evaluation Protocols
Following previous studies, we conduct experiments on
three public benchmark datasets CUB-200 [Wah et al.,
2011], tieredImageNet [Ren et al., 2018], and miniImageNet
[Vinyals et al., 2016] to verify the effectiveness of MRM.

We evaluate the model with closed-set classification ac-
curacy (Acc) and the area under ROC curve (AUROC) for
unknown class detection. The Acc measures the classifica-
tion capacity via known samples, and the AUROC evaluates
the unknown detection capacity via both known and unknown
samples. Since prior FSL studies have already demonstrated
promising results under the closed-set assumption, the main
challenge of FSOSR is how to obtain better AUROC while
maintaining the Acc. Following [Liu et al., 2020b], we set
N = 5 and K = 1, 5 during meta-training and meta-testing.
For each episode, we sample 5 known classes and 5 unknown
classes, with each containing 15 queries. Code is available at
https://github.com/Casie-che/MRM.

4.2 Implementation Details
Backbone training. Following previous FSOSR methods
[Jeong et al., 2021], we use ResNet12 [He et al., 2016]
based architecture as the feature extractor which creates 640-
dimensional feature vectors before the classifier. As [Ye et al.,
2020] suggest, we first pre-train the backbone with a simple
classifier to classify all known classes with the cross-entropy
loss. The classification performance of sampled 1-shot tasks
over the penultimate layer embedding is evaluated to identify

the best pretrained model, whose weights are subsequently
utilized to initialize the embedding function. Then we use a
SGD optimizer to train the feature extractor and transformers
over 200 epochs. The initial learning rate is set to 0.0002 for
the feature extractor and 0.002 for transformers with a multi-
step learning rate schedule. MRM is finetuning the feature
extractor over 30 epochs with 0.0005 weight decay. During
training, We use the validation set to select the best model.
The comparison results are calculated over 600 evaluation
episodes on the test set.

Hypersphere updating. To construct appropriate decision
boundaries for each known class, we utilize dynamic radii
instead of a fixed threshold during training. Since the network
parameters θ and radius of hypersphere R are generally on
different scales, using a common optimal learning rate may
be inefficient. Inspired by [Ruff et al., 2018], we optimize
θ and R in an alternating minimization coordinate descent
approach. We train the network parameters θ firstly while
the radius R is fixed, then after one epoch, we calculate the
radius for each class based on the embeddings extracted from
the network of the latest update.

Classifier setting. Inspired by [Jeong et al., 2021], we uti-
lize two classifiers to detect unknown samples. The first uses
the distance between a query and its predicted class proto-
type, which is denoted as Distance. The other is SnaTCHerF,
which measures the distance between the transformed pro-
totypes and original class prototypes. To evaluate the effi-
ciency of MRM, we first plug LMRMC

in different few-shot
methods. We finetune the ProtoNet [Snell et al., 2017] as
the representative of class-specific methods with MRM loss
and Distance classifier to get MRMC-ProtoNet. Then plug
LMRMT

in FEAT [Ye et al., 2020] to get MRMT -FEAT and
MRMT -SnaTCHerF, which respectively utilize Distance and
SnaTCHer as the classifier.

Experimental setting. For simplicity, we maintain the
same hyper-parameters of our methods for all the experiments
which are obtained from the validation set. We λ = 0.1, α =
1, β = 3,m = 1 for the loss function in Eq.(1), and ν = 0.1
for hypersphere updating in Eq.(7).

4.3 Comparison with Prior Work
In order to validate the effectiveness of MRM, we conduct
thorough comparisons of few-shot methods plugged in the
MRM loss with state-of-the-art results in FSL. Additionally,
we compare the performance of MRM with classical margin-
based losses which are widely used in deep metric learning.

Comparison with Few-Shot Methods
We first compare with the standard FSL methods, including
baseline [Chen et al., 2019], ProtoNet [Snell et al., 2017] and
FEAT [Ye et al., 2020]. Then we select conventional OSR
methods, including NN [Mendes Júnior et al., 2017], Open-
Max [Bendale and Boult, 2016], and CounterFactual [Neal
et al., 2018]. Next, we choose PEELER [Liu et al., 2020b],
SnaTCHer [Jeong et al., 2021], ATT [Huang et al., 2022],
and ProCAM [Song et al., 2022] as representatives of FSOSR
methods.
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Method
CUB-200 5-way

1-shot 5-shot
Acc AUROC Acc AUROC

baseline 61.24 68.43 76.23 75.09
PEELER 62.62 57.26 82.44 65.01
ProCAM 65.88 75.88 81.14 83.70
ProCAMsm 68.54 76.05 82.22 82.34
ProtoNet 57.31 60.32 73.19 64.55
MRMC-ProtoNet (ours) 60.44 ± 0.86 63.16 ± 0.86 76.58 ± 0.63 69.25 ± 0.68
FEAT 69.03 ± 0.84 63.22 ± 0.81 83.77 ± 0.55 69.74 ± 0.75
MRMT -FEAT (ours) 70.00 ± 0.8570.00 ± 0.8570.00 ± 0.85 75.17 ± 0.74 84.51 ± 0.5284.51 ± 0.5284.51 ± 0.52 82.88 ± 0.60
SnaTCHer-F 69.03 ± 0.84 74.34 ± 0.73 83.77 ± 0.55 84.57 ± 0.57
MRMT -SnaTCHerF (ours) 70.00 ± 0.8570.00 ± 0.8570.00 ± 0.85 76.30 ± 0.7076.30 ± 0.7076.30 ± 0.70 84.51 ± 0.5284.51 ± 0.5284.51 ± 0.52 85.91 ± 0.5085.91 ± 0.5085.91 ± 0.50

Table 1: Comparison with the state-of-the-art methods on CUB-
200. Average closed-set classification accuracies (%) and average
unknown detection AUROCs (%) over 600 test episodes with 95%
confidence intervals. We cite the baseline results based on [Song et
al., 2022].

Method
tieredImageNet 5-way

1-shot 5-shot
Acc AUROC Acc AUROC

NN 67.73 ± 0.96 62.70 ± 0.72 83.43 ± 0.66 69.77 ± 0.75
OpenMax 68.28 ± 0.95 60.13 ± 0.74 83.48 ± 0.66 65.51 ± 0.83
CounterFactual 70.08 ± 0.94 71.04 ± 0.80 85.36 ± 0.60 78.66 ± 0.62
PEELER 69.51 ± 0.92 65.20 ± 0.76 84.10 ± 0.66 73.27 ± 0.71
SnaTCHer-T 70.45 ± 0.95 74.84 ± 0.79 84.42 ± 0.68 82.03 ± 0.66
SnaTCHer-L 70.85 ± 0.99 74.95 ± 0.83 85.23 ± 0.64 80.81 ± 0.68
ProCAMsm 68.82 75.55 85.6485.6485.64 82.77
ATT 69.34 ± 0.95 72.74 ± 0.78 83.82 ± 0.63 78.66 ± 0.6
ProtoNet 68.26 ± 0.96 60.73 ± 0.80 83.40 ± 0.65 64.96 ± 0.83
MRMC-ProtoNet (ours) 68.35 ± 0.94 72.99 ± 0.74 84.75 ± 0.62 78.18 ± 0.60
FEAT 70.52 ± 0.96 63.54 ± 0.76 84.74 ± 0.69 70.74 ± 0.75
MRMT -FEAT (ours) 71.13 ± 0.9171.13 ± 0.9171.13 ± 0.91 74.30 ± 0.78 85.27 ± 0.62 80.83 ± 0.64
SnaTCHer-F 70.52 ± 0.96 74.28 ± 0.80 84.74 ± 0.69 82.02 ± 0.64
MRMT -SnaTCHerF (ours) 71.13 ± 0.9171.13 ± 0.9171.13 ± 0.91 75.59 ± 0.7775.59 ± 0.7775.59 ± 0.77 85.27 ± 0.62 83.03 ± 0.6383.03 ± 0.6383.03 ± 0.63

Table 2: Comparison with the state-of-the-art methods on
tieredImageNet. Average closed-set classification accuracies (%)
and average unknown detection AUROCs (%) over 600 test episodes
with 95% confidence intervals. We cite the baseline results based on
[Song et al., 2022] and [Huang et al., 2022].

We illustrate the average closed-set classification accura-
cies and unknown detection AUROCs over 600 test episodes
with 95% confidence intervals under 5-way 5-shot and 1-shot
settings respectively. We cite most of the baseline results
based on [Huang et al., 2022] and [Song et al., 2022]. Table
1 demonstrates the results for CUB-200, Table 2 and Table 3
show comparisons on tieredImageNet and miniImageNet re-
spectively. For each setting, the best results are highlighted in
bold.

According to the results, we can find that OSR methods
show unsatisfactory classification accuracies in the few-shot
setting, whereas FSL methods perform poorly in unknown
class detection. On the contrary, methods plugged in MRM
loss can improve the unknown detection of AUROC by a sig-
nificant margin and maintain the closed-set accuracy. For
instance, on CUB-200, tieredImageNet, and miniImageNet,
MRMC-ProtoNet has around 13%, 13%, and 16% perfor-
mance improvements compared with the vanilla ProtoNet un-
der 1-shot setting, and 5%, 13%, 17% improvements under
5-shot setting, while correctly classifying the closed-set. Re-

Method
miniImageNet 5-way

1-shot 5-shot
Acc AUROC Acc AUROC

NN 63.82 ± 0.85 56.96 ± 0.75 80.12 ± 0.57 63.43 ± 0.76
OpenMax 63.69 ± 0.84 62.64 ± 0.80 80.56 ± 0.58 62.27 ± 0.71
CounterFactual 63.7 ± 0.83 64.17 ± 0.88 81.44 ± 0.54 71.58 ± 0.76
PEELER 65.86 ± 0.85 60.57 ± 0.83 80.61 ± 0.59 67.35 ± 0.80
SnaTCHer-T 66.60 ± 0.80 70.17 ± 0.88 81.77 ± 0.53 76.66 ± 0.78
SnaTCHer-L 67.60 ± 0.83 69.40 ± 0.92 82.36 ± 0.58 76.15 ± 0.83
ProCAMsm 67.8667.8667.86 71.09 83.66 77.51
ATT 67.64 ± 0.81 71.35 ± 0.6871.35 ± 0.6871.35 ± 0.68 82.31 ± 0.49 79.85 ± 0.58
ProtoNet 64.01 ± 0.88 51.81 ± 0.93 80.09 ± 0.58 60.39 ± 0.92
MRMC-ProtoNet (ours) 64.05 ± 0.82 68.11 ± 0.73 84.73 ± 0.5184.73 ± 0.5184.73 ± 0.51 77.07 ± 0.63
FEAT 67.02 ± 0.85 57.01 ± 0.84 82.02 ± 0.53 63.18 ± 0.78
MRMT -FEAT (ours) 67.03 ± 0.83 71.22 ± 0.83 82.00 ± 0.55 78.99 ± 0.67
SnaTCHer-F 67.02 ± 0.85 68.27 ± 0.96 82.02 ± 0.53 77.42 ± 0.73
MRMT -SnaTCHerF (ours) 67.03 ± 0.83 71.20 ± 0.80 82.00 ± 0.55 80.39 ± 0.5980.39 ± 0.5980.39 ± 0.59

Table 3: Comparison with the state-of-the-art methods on
miniImageNet. Average closed-set classification accuracies (%) and
average unknown detection AUROCs (%) over 600 test episodes
with 95% confidence intervals. We cite the baseline results based
on [Song et al., 2022] and [Huang et al., 2022].

sults further verify the effectiveness of the combination of
MRM and transformation function. Compared with state-
of-the-art FSOSR methods, methods with LMRMT

achieve
better AUROC in most settings without relying on additional
pseudo-unknown class samples.

Comparison with Margin-Based Methods
To provide a more comprehensive explanation of the advan-
tages of MRM loss, we conduct a comparative analysis with
existing margin-based losses, including Triplet loss [Schroff
et al., 2015], Center loss [Wen et al., 2016], and Multi-
similarity loss [Wang et al., 2019b]. We illustrate the aver-
age unknown detection AUROCs over 600 test episodes on
5-way 5-shot miniImageNet tasks in Figure 2. Remarkably,
results clearly demonstrate that MRM surpasses the perfor-
mance of the compared margin-based losses. By dividing
the distribution of known classes into clearer regions and re-
fining the distribution of each class, MRM enables effective
identification of unknown samples located away from known
regions. Through the comparison of unknown detection AU-
ROCs, MRM demonstrates its superiority in building a highly
discriminative distribution structure.

4.4 Ablation Study
Visualization of the effect of MRM loss. We plot t-SNE
[van der Maaten and Hinton, 2008] figure to visualize the
distributions of images sampled from miniImageNet in the
feature space learned by standard softmax loss and MRM
loss in Figure 3, respectively. In Figure 3a, the feature ex-
tractor learned by softmax loss can only construct ambigu-
ous decision boundaries while ignoring the distribution of un-
knowns. It might easily lead to confusion between unknown
and known samples as all features just follow one distribu-
tion. Figure 3b shows that the feature extractor trained by
MRM loss can obtain a finer boundary between classes and a
distinct decision boundary for each class, which enables the
model to detect unknown samples by rejecting samples away
from closed boundaries while maintaining the classification
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Method Anchor generating Radius refining Relation modeling 1-shot 5-shot

MRM #1 65.41± 0.85 74.80± 0.84
MRM #2 ✓ 65.95± 0.85 75.42± 0.57
MRM #3 ✓ ✓ 66.89± 0.73 76.35± 0.57
Our model ✓ ✓ ✓ 68.11± 0.73 77.07± 0.63

Table 4: Ablation study on different strategies for MRM loss on 5-way miniImageNet tasks. Average unknown detection AUROCs (%) over
600 test episodes with 95% confidence intervals.

Figure 2: Comparisons of existing margin-based losses with MRM
loss on 5-way 5-shot miniImageNet tasks. Average unknown detec-
tion AUROCs (%) over 600 test episodes.

capability.
Effect of different strategies for MRM loss. We perform
our ablation study on the 5-way 1-shot and 5-shot tasks on
miniImageNet to analyze the effectiveness of different strate-
gies in Table 4. Since the main challenge of FSOSR is how to
improve detection capability for unknown classes, we mainly
focus on the performance of AUROC. We compare our full
model with a number of stripped down versions by evaluating
the AUROC of ProtoNet plugged in different margin losses
and MRMC-ProtoNet. Specifically, ‘MRM #1’ utilizes the
individual sample as an anchor in a pair and forces the margin
between positive and negative samples. ‘MRM #2’ utilizes
class prototypes as anchors. On that basis, ‘MRM #3’ refines
a hypersphere for each known class with a learnable radius.
The results show an increasing trend in unknown class AU-
ROC, which indicates that integrating a large margin to the
loss function could improve the performance efficiently, and
MRM could further build a more discriminative distribution
structure to boost FSOSR performance.
Performances on different numbers of unknown classes.
During the conducted experiments, we maintain a fixed num-
ber of 5 unknown classes. However, in real-world applica-
tions, the presence of unknown samples can vary. To ac-
count for this, we investigate the performance of AUROC
for MRMC-ProtoNet in different unknown class settings,
specifically focusing on 5-way 1-shot and 5-shot tasks on
miniImageNet. We vary the number of unknown classes from
1 to 10, while keeping the loss function and classifier un-
changed. As shown in Figure 4, MRM demonstrates robust

(a) Softmax loss (b) Ours: MRM loss

Figure 3: Visualization of distributions on images optimized with
standard softmax loss (a) and MRM loss (b). The figure is plot-
ted by applying the t-SNE of ConvNet4 features of samples from
miniImageNet. Different colors represent distinct classes in a few-
shot task.

(a) 1-shot (b) 5-shot

Figure 4: Performances on different numbers of unknown classes on
5-way miniImageNet tasks. Average unknown detection AUROCs
(%) over 600 test episodes.

performance across different unknown class configurations.

5 Conclusion
In this paper, we propose a novel loss function named multi-
relation margin (MRM) that can plug in existing few-shot
methods to boost the performance of few-shot open-set recog-
nition. We first analyze the limitations of pseudo-unknown
based approaches, then propose to enlarge the margin be-
tween different classes and refine the decision boundaries for
known classes to implicitly delineate the distribution of un-
knowns without relying on pseudo-unknown samples. To bet-
ter capture the distribution information, we further construct
multiple relationships among paired samples. Detailed exper-
iments reveal that MRM indeed helps to delineate the distri-
bution of unknowns and leads to better unknown detection of
AUROC while correctly classifying the known classes.
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